
Theor Chim Acta (1993) 84:385-398 Theoretica
Chimica Acta
© Springer-Verlag 1993

Molecular dynamics on distributed memory (MIMD)
parallel computers

W. Smith
Theory and Computational Science Division, S.E.R.C. Daresbury Laboratory, Daresbury,
Warrington WA4 4AD, UK

Received October 1, 1991/Accepted November 27, 1991

Summary. Several algorithms are described that have been applied to molecular
dynamics simulations and their merits discussed. The subject matter is confined
to distributed (MIMD) algorithms. A simple mathematical model is used to
illustrate the performance characteristics of a parallel MD algorithm.

Key words: Molecular dynamics - Molecular simulation - Parallel computing

1. Introduction

At Daresbury Laboratory we have been developing parallel algorithms for
scientific applications for several years, and molecular dynamics has been a
particularly fruitful area of work. Three basic kinds of parallel molecular
dynamics algorithm, which are described below, have been developed and
studied with our collaborators. These we refer to as the Replicated Data [1],
Systolic Loop [2] and Link-Cell [3, 4] (or Domain Decomposition) algorithms.
These algorithms are, in some respects, prototypes, from which more sophisti-
cated methods have subsequently been developed.

Our experience ranges over several models of parallel computer. The first was
the Meiko M10 Transputer system with 11 T414 nodes, including a mass store
board (8 Mbytes), a graphics node and a host board. The programming language
was Occam 2. With this system David Fincham (Keele University and Dares-
bury Laboratory), Andrew Raine (University of York) and the author explored
the use of systolic loops in molecular dynamics simulations and gained some
insight into fundamental questions of efficiency and load balancing [2].

The FPS T20 computer, for which the T414 Transputer provided the
communications engine, was used in early studies of the Replicated Data
algorithm, primarily because its "hypercube" connectivity suggested minimal
communications overheads.

The Intel iPSC/2, with 32 nodes, including enhanced scalar (SX) perfor-
mance, vector (VX) processing and the Direct Connect T M communications
hardware, was used to further developments of both Replicated Data and
Systolic Loop algorithms. On this same machine (later with 64 nodes), two
independent groups worked to develop the parallel Link-Cell algorithm for

386 w. Smith

different applications: Dominic Tildesley and Mark Pinches (Southampton Uni-
versity) were primarily concerned with Lennard-Jones systems for studies of
surfaces [3]; Dennis Rapaport [4] (Bar-Ilan University) was interested in simula-
tions of polymers and microscale hydrodynamics.

The 32 node Intel iPSC/860 currently at Daresbury is now being used for real
scientific research, employing algorithms developed on the earlier machines.
Mark Pinches and Dominic Tildesley have used their link-cell programs to study
the adsorption on surfaces (e.g. N2 on graphite [5]). In 1990 Dennis Rapaport
and the author began a collaboration on polymer simulations [6]. The Replicated
Data algorithm, incorporating the Ewald technique for long ranged forces [7],
has been used by the author in a study of superionic conductors (specifically
sodium fl" alumina [8]).

Meanwhile an 8 (i860)-node Meiko Computing Surface at Daresbury has
been exploited by David Fincham and his students to embed the Ewald sum
within a systolic loop framework [9]. The incorporation of Verlet neighbour list
within the systolic loop method has also been studied [10]. Andrew Raine has
written a complete biopolymer simulation code in Occam to run on Transputer
systems and in so doing has addressed some awkward questions about load
balancing and the incorporation of bonded interactions [11].

It is clear from these developments that parallelism is making a huge impact
on molecular dynamics at Daresbury, and through various agencies (e.g. CCP5
[12]) and publications is making them available to the UK and wider academic
communities.

2. Molecular dynamics

Simply stated, molecular dynamics (MD) is a method for solving the many-par-
ticle equations of motion for a molecular system [13]. The solution is obtained
numerically, since the classical many-body problem is intractable, which means
that the trajectories of the molecules are obtained as a sequence of instantaneous
positions and velocities at discrete intervals in time (called timesteps). These
trajectories are subsequently analysed to provide structural (thermodynamic)
data and time dependent data such as correlation functions or transport proper-
ties (e.g. diffusion, thermal conductivity etc.). A typical MD simulation begins
with a starting configuration (positions and velocities) of the atoms and calcu-
lates the forces between them. From these forces, and Newton's laws, the new
positions and velocities of the molecules, one timestep later, can be calculated.
The new positions are used to calculate new forces, and so the process continues
for however many timesteps are deemed necessary to describe accurately the
phenomenon under investigation.

The most computationally expensive parts of an MD simulation are the
calculation of forces, and the integration of the equations of motion, since these
operations are done many thousands of times in a typical simulation. Since in
many cases it is assumed that the forces are derived from pair potentials (i.e. the
interaction between pairs of atoms), the forces calculations are intrinsically of the
order N 2 in cost, where N is the number of atoms, while the integration of the
equations of motion is only of order N. However, it is important to note that a
great deal of know-how has gone into devising algorithms where the forces
calculations scale more like the order ~ N [13]. The best parallel MD programs
ensure that these two operations are efficiently parallelised.

Molecular dynamics on distributed memory (MIMD) parallel computers 387

3. Replicated data algorithms

The Replicated Data (RD) strategy represents perhaps the simplest strategy for
parallel MD. It is applicable to systems in which all the possible pair interactions
in the system must be considered; this being the case even if a spherical cutoff is
applied to the potential energy functions. In other words: the effective range of
the forces is of the same order as the linear dimension of the system. The
essential ingredients of the simplest RD algorithm are as follows:

1. Each processor has a complete copy of the coordinates and velocities of all
the atoms in the system.

2. Each node of the parallel computer is assigned the task of calculating a
specific subset of all the possible pair forces. (i.e. if there are P processors and
,,~N(N- 1)/2 pair interactions, each node calculates a specific N(N- 1)/2P of
them.)

3. The total force on an individual atom is obtained as a global sum, over all
nodes, of all the pair forces associated with the atom. (This step results in every
node having a complete replica of the computed force arrays.)

4. The equations of motion are integrated independently on each node, each
node dealing with every atom in the system.

In this algorithm, the fact that all the nodes have a copy of the configuration
data implies that this strategy is expensive in terms of memory. However, in
practice, this does not preclude large simulations (~ 10,000 atoms) on machines
like the Intel iPSC/860, which has 8 Mbyte per node. The sharing out of the pair
forces calculations can be accomplished by any number of strategies, but an
important requirement is that Newton's third law is exploited to reduce the
computing cost. This can be tricky in parallel MD, but is simple in this
case - the author generally favours a variant of the Brode-Ahlrichs scheme [14].

An important feature of this algorithm is that the global sum required to
complete the forces calculations imposes a strict limitation on the efficiency of
the algorithm when the number of nodes used is relatively large. This gives rise
to poor scaling of the algorithm under these circumstances. For this reason the
algorithm is better suited to computers with hypercube connectivity, where the
communication cost of the global sum is more acceptable. Also it will be noticed
that the integration of the equations of motion does not exploit the inherent
parallelism in this case. This is because the algorithm remains of order N 2 in
terms of the pair force calculation (global sum aside) and for most practical
applications the cost of this stage is only a small percent of the total cost per
timestep. Parallelising this stage only adds more communication cost to the
algorithm, which it could well do without! Users anxious to get the maximum
out of the algorithm may however find there is still something to gain from
parallelising this operation also.

It is relatively easy to think of ways of improving this basic RD algorithm,
and two deserve special mention. Firstly, the luxury of having all the configura-
tion information on each node allows one to use classic MD strategies such as
the Verlet neighbour list or the link cell algorithm to improve the node
performance. Recently, the author implemented the Verlet neighbour list within
the RD strategy to obtain a very acceptable algorithm suitable for many
thousands of particles and giving XMP-like performance on 4-8 nodes of an

388 W. Smith

Intel iPSC/860 [7]. Secondly, it is possible to devise a version of the RD
algorithm in which the communication cost is minimised by performing the
communication concurrently with the forces computation. This technique ex-
ploits some of the features of a systolic loop approach, and has therefore been
described as the Systolic Replication algorithm [16, 9]. It is outlined below (Sect.
4).

The main point of stress about the RD method is that despite its theoretical
limitations it appears to be a versatile and powerful technique for hypercube
parallel computers with up to (say) 32 nodes. It is simple to implement, even
within existing serial MD programs, and the fact that its communications are
entirely bound into the global summation, means that reducing the program to
run on one node is trivially simple. This of course makes the program very
portable. A further advantage is the ease with which methods such as the Ewald
sum for Coulombic systems can be incorporated [7].

Some results of applying this algorithm [7] on a massively parallel computer
(the Caltech Intel Delta) are shown in Table 1. The performance for large
systems (~ 22,000 atoms) is impressive, but it is clearly difficult to obtain linear
scaling with the number of nodes used, on account of the global summing.
Scaling is especially poor with smaller number of atoms. The lesson here, as with
other algorithms, is that efficient exploitation of large parallel computers implies
large simulations.

4. Systolic loop algorithms

The systolic loop algorithms are amongst the most efficient MD algorithms for
systems of order N 2, though their use is not confined to systems of this order. It
is possible to formulate many different varieties of algorithm using systolic loops
and a systematic naming scheme for them is desirable. This paper uses our earlier
notation [2]. There are (at least) three basic types of systolic loop algorithm, each
of which has sub-variants. These are: SLS-G (Systolic Loop Single-Group),
SLD-G (Systolic Loop Double-Group) and SLB-G (Systolic Loop Bidirectional
Groups). All of these algorithms are fully distributed and load balanced and
therefore less memory intensive than the RD method. Also, they are all based on

Table 1. Performance of a replicated data algorithm on a massively parallel
computer

N P = 4 P = 16 P = 64 P = 128 P = 256

4096 11.80 3.37 1.68 1.51 1.65
5832 15.80 4.40 2.13 2.11 1.90
8000 20.49 5.67 2.70 2.26 2.21

10648 26.40 7.22 3.37 3.04 2.60
13824 13.11 4.15 3.33 3.07
17576 16.30 6.07 4.35 3.21
21952 7.40 5.19 3.60

All times in seconds per timestep
System: Sodium chloride, with cutoff 5 A
N: number of ions; P: number of nodes

Molecular dynamics on distributed memory (MIMD) parallel computers 389

the idea of circulating data "packets" between nodes, which is the origin of the
term "systolic". The data packet contains the configuration data pertaining to a
subset of atoms (i.e. coordinates, velocities and forces accumulators of the atoms,
though not necessarily all of these).

The simplest of these to implement (and describe) is the SLD-G algorithm.
In this algorithm an odd number of processors, connected in a ring topology, is
required. The initial configuration data are shared equally amongst the nodes, so
each node has one group of atoms. (The associated force accumulators are zeroed
at this stage.) The group data packet, containing the coordinate arrays and force
accumulators, is then duplicated on each node. One of these packets will remain
"fixed" on the "home" node, while the other is passed between nodes.

The pair forces that exist within the home group (the intra-group forces) are
calculated and added to the home force accumulators. Next, the duplicate
packets are sent to the next node on the ring in (say) a clockwise direction. Each
node then has the coordinates of two groups of atoms and their force accumula-
tors, which allows the inter-group forces to be calculated and added to the
appropriate accumulators. The duplicate data packets are then passed, in the
same direction, to the next processor to permit the calculation of another batch
of inter-group forces. If there are P nodes in the processor ring, the duplicated
packets must be passed (P - 1)/2 times to guarantee the calculation of all
possible pair forces. (This requirement explains why P must be an odd number!)
At the end of this stage, the duplicated packets must be returned to their home
nodes, which means passing the packets back in the opposite direction (P - 1)/2
times, and the force accumulators added to the home force accumulators.
Finally, the equations of motion for each group of atoms on each node are
integrated.

The pattern of data packet movements, for a 5-node, 2 x 5 data packet
algorithm is given in Table 2.

The good load balancing of this algorithm is manifest and the memory
requirements per node are equal. However the need to return the duplicate
packets to their home nodes (the "rewind") represents a wasteful step. The
SLB-G algorithm attempts to diminish this. Once again it requires an odd
number of nodes and a duplication of the data packets. It functions similarly to

Table 2. The data packet movements in the
SLD-G algorithm

Table 3. The data packet movements in the
SLB-G algorithm

1 2 3 4 5 1 2 3 4 5
I 2 3 4 5 1 2 3 4 5

1 2 3 4 5 5 1 2 3 4
5 1 2 3 4 2 3 4 5 I

1 2 3 4 5 4 5 1 2 3
4 5 1 2 3 3 4 5 1 2

Rewind: 3 4 5 1 2
1 2 3 4 5 3 4 5 1 2
1 2 3 4 5

Po Pl P2 P3 P4 Po Pl P2 P3 P4

390 W. Smith

the SLD-G algorithm, but here the duplicated data packets are sent in opposite
direction around the ring of nodes. The result of this pattern of movement is
that, at the end of (P - 1)/2 data passes, the duplicated data packets are within
one data pass of each other, so the rewind step is much shorter than in SLD-G.
However, because both packets are circulated, the concept of a home node is no
longer strictly valid, which means that in SLB-G it is necessary to include the
velocities of the atoms in the data packets, so the equations of motion can be
integrated when the forces calculations are complete. The data movements for a
5-node, 2 x 5 data packets algorithm are shown in Table 3.

In the SLS-G algorithm, each node is initially assigned two data packets,
which represent different groups of atoms. In this case the nodes can be either
even or odd in number and need only be connected in a line. The algorithm also
differs from SLD-G and SLB-G in that the nodes are no longer entirely
equivalent; there is a "head" and a "tail" node at the start, and end respectively,
of the chain of nodes. In terms of load balancing, all nodes perform the same
workload and the concept of a "home" node for the data packets is again valid,
as for SLD-G.

In the first stage of the SLS-G algorithm, the intra-group forces are calcu-
lated for the pair of packets on each node. In the next stage the inter-group
forces, between the atoms in different packets on the same node, are calculated.
This is followed by an exchange of data packets between nodes, prior to
calculating the next batch of inter-group forces. The movement of data packets
is different according to the location of the node in the chain, and is best
described with reference to an example, e.g. a 4-node, 8 data packet algorithm
(Table 4). Nodes other than the head or tail nodes (i.e. "worker" nodes), send

Table 4. The data packet move-
ments in the SLS-G algorithms

P0 Pl P2 P3

1 2 3 4
8 7 6 5

7 1 2 3
8 6 5 4

6 7 1 2
8 5 4 3

5 6 7 1
8 4 3 2

4 5 6 7
8 3 2 1

3 4 5 6
8 2 1 7

2 3 4 5
8 1 7 6

1 2 3 4
8 7 6 5

Molecular dynamics on distributed memory (MIMD) parallel computers 391

the first data packet to the right and simultaneously receive one from the left to
replace it. Then each node sends the second data packet to the left while
receiving one from the right. (If the communication links between nodes are
bidirectional, these send/receive operations can occur simultaneously.) The tail
node (which we may assume is on the far fight of the chain) sends one data
packet to the left, which is replaced by the second data packet on the same node,
and receives one from the left. The head node (far left) keeps one data packet
permanently fixed while it sends a data packet to the fight and receives one from
the right. In Table 4 this is seen to be a movement of the data packets in a cyclic
manner, except that one packet is fixed (packet 8). Note that the number of data
sends in this algorithm is 2P - 1, to return the packets to their home nodes with
completed force accumulators. Otherwise the algorithm strongly resembles the
SLD-G and SLB-G algorithms. The equations of motion for the home groups
are integrated straightforwardly.

There is little to chose between these three algorithms as described. However,
in terms of general applicability, we have found the SLS-G algorithm to be the
most versatile.

A useful enhancement of the systolic loop algorithms is the overlapping of
the communications with the computation of the forces. In principle, most of the
communications costs could be removed by this. For example in the SLS-G
algorithm, a scheme for this operates as follows. On each worker node:

1. Initiate first send-receive of data packet of coordinates only.

2. Initiate second send-receive of data packet of coordinates only.

3. Calculate inter-group forces.

4. Complete first send-receive.

5. Complete second send-receive.

6. Initiate first send-receive of data packet of coordinates and force accumula-
tors.

7. Initiate second send-receive of data packet of coordinates and force accumu-
lators.

8. Calculate inter-group forces.

9. Complete first send-receive.

10. Complete second send-receive.

11. Add inter-group forces to force accumulators.

12. Repeat steps 6 to 11 2(P - 1) times.

13. Initiate first send-receive of data packet of force accumulators only.

14. Initiate second send-receive of data packet of force accumulators only.

15. Calculate intra-group forces.

16. Complete first send-receive.

17. Complete second send-receive.

18. Add intra-group forces to force accumulators.

19. Integrate equations of motion.

392 W. Smith

The schemes operating on the head and tail nodes are similar. (Note: It is
important, in this scheme, to realise that the coordinate arrays are always one
move ahead of the corresponding force accumulators.) This scheme is very
elegantly handled in Occam, which supports explicit parallel constructs, but it is
somewhat less elegant in FORTRAN. It must also be said that, in practice, the
entire removal of the communications cost does not occur [15]. Initialising the
communication is inevitably a serial event, which adds time to the overall
execution, and also the transfer of data from memory often delays arithmetic
operations which may be using the same memory bank. The performance of
the systolic loop algorithms on Transputer networks has been studied in detail
in [2].

The technique of overlapping communication and computation has also been
used in the Replicated Data framework by Craven and Pawley [16]. In their
algorithm, the initial data are shared amongst the nodes in groups as in the
systolic loop algorithms. The first operation is to calculate the intra-group forces,
while copies of the group coordinate arrays are sent around the ring of
processors and consolidated into a complete array of all coordinates on each
node. At this point the calculation of intra-group forces is interrupted and the
inter-group forces are calculated. Care is taken to prevent duplicating pair force
calculations on different nodes. In the third stage, the calculation of intra-group
forces is continued, while the incomplete force arrays are circulated around the
ring for global summation. The incomplete force arrays may be shortened in the
case of molecular systems, by sending molecular force and torque arrays in place
of the full atomic arrays. Finally, when all the force arrays have been completed,
the equations of motion can be integrated for the home group of atoms on each
node. The term "systolic replication" seems appropriate to describe this al-
gorithm. Like the basic Replicated Data algorithm above, it is useful for
simulations using the Ewald sum [9].

5. Link-cells (domain decomposition)

Domain decomposition is a universal strategy adopted in many areas of mathe-
matical modelling. In molecular dynamics it generally goes by the name of the
link-cell method. It is appropriate for systems in which the potential cut-off is
very short in relation to the size of the system being simulated, and hence has
applications in such diverse subjects as: polymers, microscale hydrodynamics,
phase transitions, surfaces, micelles etc. Parallel adaptations of the link-cell
method are particularly powerful as they enable extremely large systems to be
simulated very cost-effectively.

The serial form of the algorithm is well-documented [17]. It suffices here to
outline only the basics. According to the basic strategy, the molecular dynamics
simulation cell is divided into sub-cells, with width slightly greater than the radius
of the cut-off. A simple N dependent algorithm assigns each atom to its
appropriate sub-cell and a linked list is used to construct a logical chain identifying
common cell members. A subsidiary header list identifies the first member of the
chain. These allow all the atoms in a cell to be located quickly. The calculation
of the forces is treated as the sum of the interactions between sub-cells, in the
cource of which all the pair forces are calculated. Allowance for periodic
boundaries is easily made. The algorithm performs well on serial machines because
it greatly reduces the time spent in locating interacting particles.

Molecular dynamics on distributed memory (MIMD) parallel computers 393

Parallel versions of this algorithm are easily constructed [3, 4]. The MD
cell is divided into equal regions and each region is allocated to a node. The
mapping of the regions on the array of nodes is a non-trivial problem in
general, though specific solutions for machines like hypercubes are much
easier to obtain. The important criterion is to ensure that neighbouring
nodes on the network handle neighbouring regions of the MD cell (the "conti-
guity condition"). The region on each node is further subdivided into sub-
cells as in the serial algorithm. The coordinates of the atoms in sub-cells on the
boundaries of each region are exchanged with the neighbouring nodes sharing
the boundary. After which each node may proceed to calculate all the pair
forces in its region independently. No further communciation between the
nodes is necessary until after the equations of motion have been integrated:
particles which have moved out of their node region must be reallocated to a
new node (though this can be done while the regions exchange boundary data
at the start of the next timestep). Overall the algorithm is simple, powerful and
flexible.

One subtle point needs to be mentioned regarding the exchange of boundary
data. Lest it be imagined that a simple one-step exchange of data in all directions
(north, south, east, west, up and down in 3D) is sufficient to satisfy the
contiguity condition, it must be said that this is not so. Data can only be passed
in complementary directions (north-south, east-west, up-down) at any given
instant and in between exchanges, the exchanged data must be resorted before
the next exchange. This is necessary to ensure the corner and edge sub-cell data
are correctly exchanged between regions sharing edges and corners, rather than
faces.

The ease with which this algorithm is paralMised, and the equal sharing of
the data between nodes means that it is appropriate for simulations of very large
systems. Consequently the algorithm is finding applications in many areas of
molecular dynamics [5, 18, 6] where system size is important. The performance
and scaling properties of the parallel link-cell algorithm have been studied in
detail in [3].

An interesting point about the parallel link-cell algorithm is that, although
specifically designed for systems with short-ranged forces, it can be used for
systems with Coulombic forces, which are extremely long ranged. Work is in
hand to parallelise the PPPM (Particle-Particle, Particle-Mesh) algorithm of
Hockney and Eastwood [17] in which the traditional Ewald sum is optimised by
two strategies. The first is to calculate the real-space component using the
link-cell method outlined above. The second is to replace the standard reciprocal-
space sum by a fine-grained mesh on which the Gaussian charges are replaced by
finite charges on mesh points (i.e. a charge apportioning scheme is employed).
The mesh permits the use of fast Fourier transforms in the calculation of the sum,
at great saving in the computational cost. Both of these strategies are within the
compass of distributed parallel computing, provided a distributed FFT algorithm
is available.

6. Assessment of performance

A useful way of thinking about parallel MD algorithms is to consider a simple
mathematical model. We have used such models to provide insight into the
efficiency, performance and scaling properties of algorithms [2, 1]. We begin with

394 W. Smith

the time T, required to complete one timestep:

T~,= Tp + T~ (1)

where Tp and Tc are respectively the processing time and communication
time, per timestep, per processor (assuming the processing and communica-
tion are not overlapped- the analysis therefore presents a "worst case" pic-
ture). The main objective, in serial and vector MD algorithms, is to minimise T,
for a given size of system N. However in parallel MD it is also necessary to
consider how efficiently the algorithm utilises the nodes, since the lowest T s for
a given number of nodes P, is not incompatible with a serious waste of
resources.

It is convenient to write:

where

T~ -= Tp(1 + R~p) (2)

= (3)

is the fundamental ratio.
Much can be learned from an examination of Eq. (2). Most importantly,

since Tp is clearly proportional to p -1 (assuming scalar processing on the
nodes), it follows that, when Rcp is constant, T, is likewise proportional to P
In other words, the performance of the algorithm (measured as 1/Ts, or the
number of timesteps per unit of time) scales linearly with the number of nodes
P; this being true for P > 1. Furthermore, it is apparent that when Rcp = O,
Ts = Tp and the parallel program will be maximally efficient (i.e. there is no
effective loss of performance due to the communication). It follows that, in
order to achieve maximum performance and linear scaling, we must strive to
obtain the lowest values of Rcp , i.e. Rcp -*0.

In practice, for most communicating algorithms, not only is R~p > O, but
also it is a function of both N and P. In general it appears that Rcp increases
with P and decreases with N, and we must learn which combination of these
parameters makes the algorithm efficient (i.e. low Rcp). The importance of
avoiding large Rcp regimes is seen in the case where Rcp = l , since then half the
total time T~ is spent in communications alone, effectively losing half the power
of the' parallel computer. Under these circumstances, since Rcp will usually
diminish as P is reduced, the algorithm can be made more efficient on a smaller
number of nodes.

It is interesting to note, with reference to Eq. (3), that apparently poorer
efficiency (higher Rcp) can result if the value of Tp is decreased by (say)
vectorisation of the code. This unfortunately, is true, and reflects the fact that
the algorithm will spend proportionally more of its time communicating. The
loss of efficiency will occur alongside a reduction in the scalability of the
algorithm, which means that the increase in performance of the algorithm
overall will not be in direct proportion to the increase in processing speed. The
antidote is to increase N (i.e. perform a larger simulation) or decrease P, if the
best use of resources is demanded.

It is therefore convenient for any given algorithm, to have some estimate of
Rcp in any given regime of N and P, to assess the algorithm's performance.
This is easily obtained as the following shows. We begin by defining some

Molecular dynamics on distributed memory (MIMD) parallel computers 395

Table 5. MD parameters on the
Intel iPSC/860

Parameter Time (ms)

0.0112
a ' 0.00138
fi 0.00277
y 0.00863
6 0.201

obvious parameters:

l. ~ - time to calculate one pair force.

2. c~' - time to decide if pair is within cutoff.

3. fl - time to integrate equation of motion for one atom.

4. 7 - time to communicate data for one a tom to a neighbouring node.

5. 6 - time to initiate communication.

These parameters can be obtained by simple benchmark computations, the
results for simulations with simple Lennard-Jones forces on the Intel iPSC/860
are given in Table 5. (The reader should realise that these figures represent
current estimates only, since they are subject to revision with each upgrade of the
compiler.)

As an example, we use the parameters in Table 5 in the following formulae
pertaining to the SLS-G algorithm described above.

For the processing time Tp we write:

T p = 2 (f n - 1) e + ~ (1 - f) ~ " +(2P-1)[fn2~+(1- f)n2e ']+2nf l (4)

where n = N/2P is the size of each group of atoms and f is a number which
defines the average fraction of pair interactions within the defined cut-off range
e.g. f = 7c/6 for the largest practical cut-off. (I t should be noted that this analysis
assumes a reasonably high e.g. liquid particle density, where number fluctuations
can be regarded as small.) The first term R.H.S. represents the cost of calculating
the intra-group interactions, the second the inter-group interactions and the
third, the integration of the equations of motion for the groups on each node,
per timestep.

The communications time T c is given by:

Tc = (2P - 1)(n7 + 6) (5)

which is clearly the time to complete the data passes for the 2 P - 1 systolic
"pulses".

Using n = N/2P, we may write:

(2P - 1)(N7 + 2P6)
Rcp = N2(f(~ _ ~,) + cd) + N(Zfl - ~) (6)

396 w. Smith

from which the properties of Rcp may be easily derived. For example, when N is
large (i.e. N >> P), then we may write:

(2P - 1)7
Rcp ,~ N(f(cz - o:') + ~')" (7)

In this limit, Eq. (7) verifies the comment made above: that as P or N increases
Rcp increases and diminishes respectively. However, in this form the statement is
more quantitative. A similar dependence is obtained for the Replicated Data
algorithm [1].

At the other extreme: N ~ 2P, we obtain:

(2P - 1)(7 + 6)
Rcp ~ 2P(f (~ - ~') + cC) + 2fl - c((8)

Here we see only a weak dependence on P and therefore the algorithm has
approximately the same degree of inefficiency at this limit, however many nodes
are being used. Most importantly however, we note the presence of the parame-
ter 6 (the communication start-up time) in the numerator. This makes a very
significant (and detrimental) contribution for some parallel machines (especially
the Intel hypercubes, where it is quite large - see Table 5), and as a result we can
expect poor efficiency and bad scaling under these conditions. These predictions
are fully borne out by experience.

Another way we can present these results is given in Fig. 1, where the log-log
plot of Rcp versus N for several dimensions, D, (Note: D = logzP) of the Intel
iPSC/860. The zero ordinate in this plot represents the "break even" point in the
algorithm (i.e. the point at which the communication and processing costs are
equal). It is clearly apparent that increasingly larger simulations (i.e. higher N)
are required to achieve the break even point as the dimension of the hypercube
increases, reflecting the increasing inefficiency of the algorithm with increasing
numbers of nodes. Alternatively we may say that for a given value of N, Rcp
increases with increasing P. Between 103 and 105 atoms Rcp is less than 1% in all

2.0

0.0

-2.0

-4.0

- 6 . 0 i i i I

0 , 0 1 , 0 2 , 0 3 . 0 4 . 0

togCN)

P - 6 4
P-32
P-16

P,-8
P,-4

P - 2

5 . 0

Fig. 1. Plot of log(Rcp)
versus log(N) for the
SLS-G MD algorithm and
a range of different
hypercube dimensions
(D = log2P) of the Intel
iPSC/860, based on the
mathematical model
described in Sect. 6

Molecular dynamics on distributed memory (MIMD) parallel computers 397

8.0

6.0

, , i , r • , '

[:*. 2
P-4
P=8
P-16
P-32
P--6~

4.0

2.0

0.0

-2 .0 i ~ l

0,0 1.0 2.0 3.0 4.0 5.0

log(N)

Fig. 2. Plot of log(Ts) (the
time in ms) versus log(N)
for the SLS-G algorithm
and a range of different
dimensions (D = log2P) of
the Intel iPSC/860, based
on the mathematical
model described in Sect. 6

cases shown, leading to the expectation of good scaling and high efficiency.
Such plots are useful for defining the regime under which an algorithm is
optimally efficient.

Finally, in Fig. 2, we show a log-log plot of Ts versus N for increasing
hypercube dimension. At large N we see the lines for different dimensions are
parallel with slope 2 (as expected for an N 2 algorithm). Since each line corre-
sponds to a dimension of the hypercube, the fact that the lines are evenly
spaced at this extreme shows that the algorithm is scaling linearly with the
number of nodes. At lower N values, the line of highest dimension is the first to
deviate from the ideal linear behaviour, as expected. The deviation becomes
significantly worse for N approaching the break even point of Fig. 1. All
dimensions show the same qualitative behaviour eventually, though it is pro-
gressively less severe as the number of nodes decreases. Once again, we are
reminded of the need to choose the correct N for a given number of nodes P to
ensure optimal efficiency.

7. Conclusion

In this talk we have presented the outline for three basic strategies for paral-
lelising molecular dynamics simulations. The Replicated Data and Systolic
Loop algorithms are suitable for simulations employing a relatively large cut-off
in the forces calculation, and therefore scale in cost as N 2. The Systolic Loop
methods are preferable in terms of storage requirements and efficiency, particu-
larly on massively parallel computers, where the global summing of the Repli-
cated Data strategy becomes prohibitive. However, the Replicated Data method
is undoubtedly easier to program and its efficiency is not significantly poorer
than the Systolic Loops on parallel computers with only a few dozen nodes.

The Link-Cell method is ideal for simulations with a short ranged cut-off,
where the cost scales approximately as N. The parallel implementation of this is
simple and very powerful, allowing very large simulations (~ 106 atoms) to be
simulated cost effectively.

398 W. Smith

Understanding of the efficiency and scaling properties of these algorithms is
important if they are to be used to best advantage. Fortunately, mathematical
models are reasonably simple to construct and provide a deep insight into these
questions, even before the required MD programs have been written!

Acknowledgements. I wish to thank my collaborators with whom several of the described algorithms
were developed, namely: David Fineham (Keele University), Andrew Raine (Cambridge), Dennis
Rapaport (Bar-Ilan University), Dominic Tildesley (Southampton University) and Mark Pinches
(Southampton University). Thanks are also due to my colleagues at Daresbury Laboratory,
particularly Martyn Guest for his encouragement and enthusiasm and Bill Purvis for his advice on
computing issues. Battelle Pacific Northwest Laboratory is thanked for time on the Caltech Intel
Delta, which produced the results in Table 1. Lastly, I am greatly indebted to my hosts; Robert
Harrison (Argonne National Laboratory) and Ray Bair (Battelle Pacific North West Laboratory) for
inviting me to take part in this workshop.

References

1. Smith W (1991) Comp Phys Comm 62:229
2. Raine AC, Fincham D, Smith W (1989) Comp Phys Comm 55:13
3. Pinches MRS, Tildesley D, Smith W (1991) Mol Simulation 6:51
4. Rapaport D (1991) Comp Phys Comm 62:217
5. Pinches M, Tildesley D (1992) Unpublished work, also Pinches M (1992) Thesis, University of

Southampton
6. Smith W, Rapaport D (1992) Molecular Simulation (in press)
7. Smith W (1992) Comp Phys Comm 67:392
8. Smith W, Gillan MJ (1992) J Phys: Condens Matter 4:3215
9. Miller S, Fincham D, Jackson RA (1990) in: Pritchard DJ, Scott CJ (eds) Applications of

transputers 2. IOS Press, Amsterdam
10. Fincham D, Mitchell PJ (1991) Molecular Simulation 7:135
11. Raine AC (1991) Molecular Simulation 7:59
12. Smith W (1987) Molecular Graphics 5:71
13. Allen MP, Tildesley DJ (1987) Computer simulation of liquids. Oxford University Press
14. Brode S, Ahlrichs R (1986) Comp Phys Comm 42:51
15. Bomans L, Roose D (1989) Concurrency Practice and Experience 1:3
16. Craven CJ, Pawley GS (1991) Comp Phys Comm 62:169
17. Hockney RW, Eastwood JW (1981) Computer simulation using particles. McGraw-Hill, New

York
18. Belak J (1991) A parallel implementation of a molecular dynamics algorithm using the PCP

programming paradigm and its application to orthogonal metal cutting. CCP5 Information
Quarterly, No 34, March 1992, p 23

